|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Может ли произведение двух последовательных натуральных чисел равняться произведению двух последовательных чётных чисел? Развертка боковой поверхности конуса представляет сектор с углом в 120o; в конус вписана треугольная пирамида, углы основания которой составляют арифметическую прогрессию с разностью 15o. Определить угол наклона к плоскости основания наименьшей из боковых граней. Найдите наименьшее значение функции y = 8tgx-16x+4π -5 на отрезке [- |
Задача 58466
УсловиеДокажите, что при помощи одной линейки нельзя разделить данный отрезок пополам.РешениеПредположим, что нам удалось найти требуемое построение, т. е. написать некоторую инструкцию, в результате выполнения которой всегда получается середина данного отрезка. Выполним это построение и рассмотрим проективное преобразование, которое концы данного отрезка оставляет неподвижными, а середину переводит в другую точку. Это преобразование можно выбрать так, чтобы исключительная прямая не проходила ни через одну из точек, получающихся в результате промежуточных построений. Выполним нашу якобы существующую инструкцию еще раз, но теперь всякий раз, когда нам будут встречаться слова к возьмем произвольную точку (соответственно прямую)к, будем брать образ той точки (соответственно прямой), которую брали при первом выполнении построения. Поскольку при проективном преобразовании прямая переходит в прямую, а пересечение прямых — в пересечение их образов, причем в силу выбора проективного преобразования это пересечение всегда конечно, то на каждом шаге второго построения будем получать образ результата первого построения, поэтому в конце получим не середину отрезка, а ее образ. Приходим к противоречию.Замечание. Фактически мы доказали следующее утверждение: если существует проективное преобразование, которое каждый из объектов A1,..., An переводит в себя, а объект B в себя не переводит, то, исходя из объектов A1,..., An, объект B невозможно построить с помощью одной линейки. Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|