|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что в любом выпуклом многоугольнике имеется не более 35 углов, меньших 170o . Доказать, что в выпуклый равносторонний (но не обязательно правильный) пятиугольник можно поместить правильный треугольник так, что одна из его сторон будет совпадать со стороной пятиугольника, а весь треугольник будет лежать внутри этого пятиугольника. |
Задача 65294
УсловиеВ окружность вписан неправильный многоугольник. Если вершина A разбивает дугу, заключенную между двумя другими вершинами, на две неравные части, то такая вершина A называется неустойчивой. Каждую секунду какая-нибудь неустойчивая вершина перепрыгивает в середину своей дуги. В результате каждую секунду образуется новый многоугольник. Докажите, что сколько бы секунд ни прошло, многоугольник никогда не будет равным исходному. РешениеРассмотрим длины дуг между соседними точками. В силу неравенства a² + b² > (a+b/2)² (при a ≠ b) сумма квадратов этих дуг каждую секунду уменьшается. Следовательно, многоугольник никогда не станет таким же, как был. ЗамечанияДисперсия набора длин дуг также уменьшается. Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|