Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Написанное на доске четырехзначное число можно заменить на другое, прибавив к двум его соседним цифрам по единице, если ни одна из этих цифр не равна 9, либо вычтя из соседних двух цифр по единице, если ни одна из них не равна 0. Можно ли с помощью таких операций из числа 1234 получить число 2002?

   Решение

Задача 97826
Темы:    [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Рассматриваются  4(N – 1)  граничных клеток таблицы размером N×N. Нужно вписать в эти клетки последовательные  4(N – 1)  целых чисел так, чтобы сумма чисел в вершинах любого прямоугольника со сторонами, параллельными диагоналям таблицы, в том числе и в "вырожденных" прямоугольниках – диагоналях, равнялась одному и тому же числу (для прямоугольников суммируются четыре числа, для диагоналей – два числа). Возможно ли это? Рассмотрите случаи:
  а)  N = 3;
  б)  N = 4;
  в)  N = 5.


Решение

  а), в) На рисунках 1а, 1б приведены соответствующие расстановки.

  б) Мы имеем ровно четыре прямоугольника: две диагонали и два "настоящих" прямоугольника; следовательно, сумма всех 12 расставленных чисел делится на 4. Предположим, что мы расставили числа от  N – 5  до  N + 6.  Их сумма  12N + 6  не делится на 4. Противоречие.


Ответ

а), в) Возможно;  б) невозможно.

Замечания

1. Если слово "целые" заменить на "натуральные", то ответ в п. в) отрицателен: имеется 5 прямоугольников, а сумма даже двух наибольших чисел меньше ⅕ суммы всех чисел.

2. В задаче М886 из Задачника "Кванта" добавлен еще случай  N = 1985.

3. Баллы: 2 + 3 + 4.

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1983/1984
Номер 5
вариант
Вариант весенний тур, основной вариант, 7-8 класс
Задача
Номер 3
олимпиада
Название Турнир городов
Турнир
Дата 1983/1984
Номер 5
вариант
Вариант весенний тур, подготовительный вариант, 7-8 класс
Задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .