|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Перед Шариком лежит бесконечное число котлет, на каждой сидит по мухе. На каждом ходу Шарик последовательно делает две операции: 1) съедает какую-то котлету вместе со всеми сидящими на ней мухами; 2) пересаживает одну муху с одной котлеты на другую (на котлете может быть сколько угодно мух). Шарик хочет съесть не более миллиона мух. Докажите, что он не может действовать так, чтобы каждая котлета была съедена на каком-то ходу. Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата. |
Задача 66926
УсловиеДокажите, что в неравнобедренном треугольнике одна из окружностей, касающихся вписанной и описанной окружностей внутренним, а одной из вневписанных внешним образом, проходит через вершину треугольника.РешениеПусть $\omega$ и $\omega_A$ – вписанная и вневписанная, противоположная вершине $A$ окружности. Обозначим через $t$ их общую внутреннюю касательную, отличную от прямой $BC$. Рассмотрим инверсию с центром $A$, меняющую местами $\omega$ и $\omega_A$. Она переводит прямую $t$ в окружность $s$, проходящую через $A$, касающуюся $\omega$ внутренним образом, а $\omega_A$ внешним и касающуюся в $A$ прямой, параллельной $t$. Поскольку прямые $BC$ и $t$ симметричны относительно внутренней биссектрисы угла $A$, касательные в точке $A$ к $s$ и описанной около треугольника $ABC$ окружности совпадают. Следовательно, $s$ – окружность из условия задачи. Источники и прецеденты использования
|
||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|