ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Петя взял произвольное натуральное число, умножил его на 5, результат снова умножил на 5, потом ещё на 5, и так далее.
Верно ли, что с какого-то момента все получающиеся у Пети числа будут содержать 5 в своей десятичной записи?

Вниз   Решение


Докажите, что в правильном двенадцатиугольнике A1A2...A12 диагонали A1A5, A2A6, A3A8 и A4A11 пересекаются в одной точке.

Вверх   Решение

Задача 30702
Темы:    [ Раскладки и разбиения ]
[ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 7,8
В корзину
Прислать комментарий

Условие

а) Сколькими способами можно разбить 15 человек на три команды по пять человек в каждой?
б) Сколькими способами можно выбрать из 15 человек две команды по пять человек в каждой?


Подсказка

См. задачу 30692.


Ответ

а)     способами;   б)     способами.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 11
Название Комбинаторика-2
Тема Классическая комбинаторика
задача
Номер 016

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .