ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На стороне AB параллелограмма ABCD (или на её продолжении) взята точка M, для которой ∠MAD = ∠AMO, где O – точка пересечения диагоналей параллелограмма. Докажите, что MD = MC. |
Задача 53458
УсловиеРавные отрезки AB и CD пересекаются в точке K. Известно, что AC || BD. Докажите, что треугольники AKC и BKD равнобедренные. ПодсказкаЧерез точку A проведите прямую, параллельную CD. РешениеЧерез точку A проведём прямую, параллельную CD, до пересечения
с продолжением отрезка BD в точке M. Треугольники AMD и DCA равны по стороне Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке