|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Четырехугольник ABCD вписанный. Докажите, что точка Микеля для прямых, содержащих его стороны, лежит на отрезке, соединяющем точки пересечения продолжений сторон. В некотором городе на каждом перекрёстке сходятся ровно три улицы. Улицы раскрашены в три цвета так, что на каждом перекрёстке сходятся улицы трёх разных цветов. Из города выходят три дороги. Докажите, что они имеют разные цвета. |
Задача 57234
УсловиеПостройте треугольник ABC по медиане mc и биссектрисе lc, еслиРешениеПусть продолжение биссектрисы CD пересекает описанную окружность треугольника ABC (с прямым углом C) в точке P, PQ — диаметр описанной окружности, O — ее центр. Тогда PD : PO = PQ : PC, т. е. PD . PC = 2R2 = mc2. Поэтому, проведя к окружности с диаметром CD касательную длинойИсточники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|