ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Сколькими способами можно разрезать ожерелье, состоящее из 30 различных бусин на 8 частей (резать можно только между бусинами)? Точка $O$ — центр описанной окружности треугольника $ABC$, $AH$ — его высота. Точка $P$ — основание перпендикуляра, опущенного из точки $A$ на прямую $CO$. Докажите, что прямая $HP$ проходит через середину отрезка $AB$. Найдите число прямоугольников, составленных из клеток доски с m горизонталями и n вертикалями, которые содержат клетку с координатами (p, q). Анаграммой называется произвольное слово, полученное из данного слова
перестановкой букв. Сколько анаграмм можно составить из слов: |
Задача 56978
УсловиеПрямые AM и AN симметричны относительно биссектрисы
угла A треугольника ABC (точки M и N лежат на прямой BC).
Докажите, что
BM . BN/(CM . CN) = c2/b2. В частности, если AS — симедиана, то
BS/CS = c2/b2.
РешениеПо теореме синусов AB/BM = sin AMB/sin BAM и AB/BN = sin ANB/sin BAN. Значит, Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке