|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Сколько различных делителей имеют числа а) 2·3·5·7·11; б) 22·33·55·77·1111 ? |
Задача 109431
УсловиеНа клетчатой бумаге отмечены четыре узла сетки, образующие квадрат 4*4. Отметьте ещё два узла и соедините их замкнутой ломаной так, чтобы получился шестиугольник (не обязательно выпуклый) площади 6 клеток.РешениеМожно попытаться найти решение, просто пробуя различные пары вершин внутри квадрата 4*4 и стараясь сделать получаемый шестиугольник поуже. При этом удобнее считать не площадь шестиугольника, а площадь оставшейся части квадрата - она должна быть равна 10 клеткам. Для подсчёта площади можно разбить оставшуюся часть на прямоугольные треугольники и вспомнить, что площадь прямоугольного треугольника, катеты которого идут по линиям сетки, равна половине площади прямоугольника со сторонами a и b (см. рис. слева) и равна ab/2 (эта формула верна и для произвольного прямоугольного треугольника). Те из вас, кто знает более общую формулу: площадь треугольника со стороной a и опущенной на неё высотой h равна ah/2 (см. рис. справа), могут сразу найти площадь произвольного треугольника, не разбивая его на прямоугольные.ОтветИсточники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|