ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан треугольник ABC . На прямой AC отмечена точка B1 так, что AB=AB1 , при этом B1 и C находятся по одну сторону от A . Через точки C , B1 и основание биссектрисы угла A треугольника ABC проводится окружность , вторично пересекающая окружность, описанную около треугольника ABC , в точке Q . Докажите, что касательная, проведённая к в точке Q , параллельна AC . Четырехугольник ABCD описан около окружности. Биссектрисы внешних углов A и B пересекаются в точке K , внешних углов B и C – в точке L , внешних углов C и D – в точке M , внешних углов D и A – в точке N . Пусть K1 , L1 , M1 , N1 – точки пересечения высот треугольников ABK , BCL , CDM , DAN соответственно. Докажите, что четырехугольник K1L1M1N1 – параллелограмм. |
Задача 97923
УсловиеИмеется два трёхлитровых сосуда. В одном 1 л воды, в другом – 1 л двухпроцентного раствора поваренной соли. Разрешается переливать любую часть жидкости из одного сосуда в другой, после чего перемешивать. Можно ли за несколько таких переливаний получить полуторапроцентный раствор в том сосуде, в котором вначале была вода? РешениеПока вся жидкость не окажется в одном сосуде (тогда получится однопроцентный раствор и уже ничего не изменится), концентрация соли в первом сосуде (где была вода) ниже, чем во втором (см. задачу 35739). Пусть в конце в первом сосуде полуторапроцентный раствор. Тогда во втором – не ниже. Слив всё в один сосуд, получим 2 л с концентрацией соли выше 1%, что невозможно. ОтветНельзя. ЗамечанияБаллы: 7-8 кл. – 3, 9-10 кл. – 2 Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке