ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

В окружность радиуса 2 вписан тридцатиугольник A1A2...A30. Докажите, что на дугах A1A2, A2A3, ..., A30A1 можно отметить по одной точке (B1, B2, ..., B30 соответственно) так, чтобы площадь шестидесятиугольника A1B1A2B2...A30B30 численно равнялась периметру тридцатиугольника A1A2...A30.

   Решение

Задача 116192
Темы:    [ Примеры и контрпримеры. Конструкции ]
[ Пятиугольники ]
[ Замощения костями домино и плитками ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 10,11
В корзину
Прислать комментарий

Условие

ABCDE — правильный пятиугольник. Tочка B' симметрична точке B относительно прямой AC (см. рисунок). Mожно ли пятиугольниками, равными AB'CDE, замостить плоскость?


Решение

Да, можно. Hапример, одним из способов, показанных на рисунках а–в.

Рис. а Рис. б Рис. в

Источники и прецеденты использования

олимпиада
Название Московская устная олимпиада по геометрии
год/номер
Номер 03 (2005 год)
Дата 2005-04-3
класс
Класс 10-11 класс
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .