ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Найдите точку максимума функции y = (11-x)ex+11 .

Вниз   Решение


Даны n комплексных чисел C1, C2,..., Cn, таких, что если их представлять себе как точки плоскости, то они являются вершинами выпуклого n-угольника. Доказать, что если комплексное число z обладает тем свойством, что

$\displaystyle {\frac{1}{z-C_1}}$ + $\displaystyle {\frac{1}{z-C_2}}$ + ... + $\displaystyle {\frac{1}{z-C_n}}$ = 0,

то точка плоскости, соответствующая z, лежит внутри этого n-угольника.

Вверх   Решение

Задача 110952
Темы:    [ Отношение объемов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

Точки A , B , C , D , A1 , B1 , C1 , D1 лежат на сфере. Отрезки AA1 , BB1 , CC1 , DD1 пересекаются в точке S , которая делит отрезок DD1 пополам. Известно, что DD1 = 2 , отношение радиусов вписанных окружностей треугольников SB1C и SBC1 равно , отношение объёмов пирамид SABC и SA1B1C1 равно , а отношение объёмов пирамид SA1BD и SAB1D1 равно . Найдите отрезки SA , SB , SC .

Ответ

, , .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 8854

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .