ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Cередины противолежащих сторон шестиугольника соединены отрезками. Oказалось, что точки попарного пересечения этих отрезков образуют равносторонний треугольник. Докажите, что проведённые отрезки равны.

   Решение

Задача 111338
Темы:    [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Равносоставленные фигуры ]
[ Площади криволинейных фигур ]
Сложность: 5
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Покажите, что существует выпуклая фигура, ограниченная дугами окружностей, которую можно разрезать на несколько частей и из них сложить две выпуклые фигуры, ограниченные дугами окружностей.

Решение

Первое решение. Разрезав криволинейный шестиугольник с дугами в качестве сторон, можно сложить криволинейный "квадрат" и линзу (рис.).


Второе решение. Рассмотрим трапецию ABCD , у которой AB=BC=CD=1 и площадь равна площади правильного треугольника со стороной 1. Известно, что из любого многоугольника, разрезав его на подходящие части, можно сложить любой другой многоугольник той же площади; разрежем трапецию на несколько многоугольников и сложим из них правильный треугольник. Проведем теперь дугу окружности через вершины трапеции. Отрезав от сегмента, ограниченного дугой и отрезком AD , три маленьких сегмента по сторонам трапеции AB, BC, CD (рис.) и приставив их к сторонам правильного треугольника, получим выпуклую фигуру F (рис.), ограниченную тремя дугами окружностей. Таким образом, фигуру, составленную из двух таких сегментов, симметричных относительно общей хорды (рис.), можно разрезать на части и сложить из них две фигуры, равных F .

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 71
Год 2008
вариант
Класс 9
задача
Номер 6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .