|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи С выпуклым четырехугольником ABCD проделывают следующую операцию: одну из данных вершин меняют на точку, симметричную этой вершине относительно серединного перпендикуляра к диагонали (концом которой она не является), обозначив новую точку прежней буквой. Эту операцию последовательно применяют к вершинам A, B, C, D, A, B,... - всего n раз. Назовем четырехугольник допустимым, если его стороны попарно различны и после применения любого числа операций он остается выпуклым. Существует ли: а) допустимый четырехугольник, который после n<5 операций становится равным исходному; б) такое число n0, что любой допустимый четырехугольник после n=n0 операций становится равным исходному? |
Задача 102843
УсловиеСуществуют ли такие двузначные числа ab, cd, что ab·cd = abcd. РешениеДопустим, что равенство верно, и преобразуем его: ab·cd = abcd = ab·100 + cd > ab·cd + cd. Противоречие. ОтветНе существуют. Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|