Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В треугольнике ABC через O, I обозначены центры описанной и вписанной окружностей соответственно. Вневписанная окружность ωa касается продолжений сторон AB и AC в точках K и M соответственно, а стороны BC – в точке N. Известно, что середина P отрезка KM лежит на описанной окружности треугольника ABC. Докажите, что точки O, N и I лежат на одной прямой.

Вниз   Решение


Для определения эффективной температуры звёзд используют закон Стефана — Больцмана, согласно которому мощность излучения нагретого тела прямо пропорциональна площади его поверхности и четвёртой степени температуры: P=σ ST4 , где σ = 5,7· 10-8  — числовой коэффициент, площадь измеряется в квадратных метрах, температура — в градусах Кельвина, а мощность — в ваттах. Известно, что некоторая звезда имеет площадь S = · 109 м2 , а излучаемая ею мощность P не менее 9,12· 1010 , определите наименьшую возможную температуру этой звезды.

Вверх   Решение

Задача 67216
Темы:    [ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Автор: Курский М.

Пусть $H$ – ортоцентр остроугольного треугольника $ABC$; $E$, $F$ – такие точки на сторонах $AB$, $AC$ соответственно, что $AEHF$ – параллелограмм; $X$, $Y$ – точки пересечения прямой $EF$ с описанной окружностью $\omega$ треугольника $ABC$; $Z$ – точка $\omega$, диаметрально противоположная $A$. Докажите, что $H$ – ортоцентр треугольника $XYZ$.

Решение

Из условия следует, что $\angle BHE=\angle CHF=\pi/2$, следовательно, треугольники $BHE$ и $CHF$ подобны и $AF:EB=EH:EB=HF:FC=AE:EC$. Поэтому $AE\cdot EB=AF\cdot FC$, т.е. степени точек $E$ и $F$ относительно описанной окружности равны и середина $D$ отрезка $AH$ является также серединой $XY$. Поэтому средняя линия $OD$ треугольника $AHZ$ перпендикулярна $XY$. Значит, $ZH$ – высота треугольника $XYZ$, а поскольку точка $A$, симметричная $H$ относительно середины $XY$, лежит на описанной окружности, то $H$ – ортоцентр.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2023
Заочный тур
задача
Номер 11 [8-10 кл]

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .