ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вдоль двух прямолинейных парковых аллеек посажены пять дубов — по три вдоль каждой аллеи. Где посадить шестой дуб так, чтобы можно было проложить еще две прямолинейные аллеи, вдоль каждой из которых росло бы тоже по три дуба?

дубы

   Решение

Задача 98074
Темы:    [ Наглядная геометрия в пространстве ]
[ Шахматная раскраска ]
[ Четность и нечетность ]
[ Прямоугольные параллелепипеды ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9,10
В корзину
Прислать комментарий

Условие

Автор: Фомин С.В.

В нашем распоряжении имеются "кирпичи", имеющие форму, которая получается следующим образом: приклеиваем к одному единичному кубу по трём его граням, имеющим общую вершину, ещё три единичных куба, так что склеиваемые грани полностью совпадают. Можно ли сложить прямоугольный параллелепипед 11×12×13 из таких "кирпичей"?


Решение

Допустим, что нам удалось сложить параллелепипед из "кирпичей". Раскрасим получившийся параллелепипед в два цвета в шахматном порядке. Ровно половина кубиков окажется окрашена в белый цвет.  11·12·13 : 2  – чётное число. С другой стороны, в каждом "кирпиче", из которых составлен параллелепипед, либо один, либо три белых кубика. Самих "кирпичей" тоже нечётное число  (11·12 : 4),  поэтому всего белых кубиков – нечётное число, что противоречит полученному ранее результату.

Замечания

5 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 12
Дата 1990/1991
вариант
Вариант осенний тур, тренировочный вариант, 10-11 класс
Задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .