|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Двое играют в следующую игру. Каждый игрок по очереди вычёркивает 9 чисел (по своему выбору) из последовательности 1, 2, 3, ..., 100, 101. После одиннадцати таких вычёркиваний останутся два числа. Затем второй игрок присуждает первому столько очков, какова разница между этими оставшимися числами. Доказать, что первый игрок всегда сможет набрать по крайней мере 55 очков, как бы ни играл второй. |
Задача 61510
УсловиеНа доске написано n натуральных чисел. Пусть ak – количество тех из них, которые больше k. Исходные числа стерли и вместо них написали все положительные ak. Докажите, что если с новыми числами сделать то же самое, то на доске окажется исходный набор чисел. ПодсказкаПроследите за изменением диаграммы Юнга. РешениеСм. задачу 98424. Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|