|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В равнобедренном треугольнике ABC с основанием BC
угол при вершине A равен 80°. Внутри треугольника ABC
взята точка M так, что При помощи формулы Лежандра (см. задачу 60553) докажите, что число а) Пусть {a1, a2,..., an} – последовательность целых чисел, сумма которых равна 1. Докажите, что ровно у одного из ее циклических сдвигов б) Выведите отсюда равенства: Пусть C(x) = xC²(x) + 1,
и получите явный вид функции C(x).
Определение чисел Каталана можно найти в справочнике. Выведите формулу для чисел Каталана, воспользовавшись результатом задачи 61519 и равенством |
Страница: 1 2 3 4 >> [Всего задач: 20]
Найдите производящие функции последовательностей многочленов Чебышева первого и второго рода:
Берутся всевозможные непустые подмножества из множества чисел 1, 2, 3, ..., n. Для каждого подмножества берётся величина, обратная к произведению всех его чисел. Найти сумму всех таких обратных величин.
Пусть an – число решений уравнения x1 + ... + xk = n в целых неотрицательных числах и F(x) – производящая функция последовательности an.
а) Найдите производящую функцию последовательности чисел Люка (определение чисел Люка смотри в задаче 60585) б) Пользуясь этой функцией, выразите Ln через φ и
Найдите производящие функции последовательности многочленов Фибоначчи F(x, z) = F0(x) + F1(x)z + F2(x)z² + ... + Fn(x)zn + ...
Страница: 1 2 3 4 >> [Всего задач: 20] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|