ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 20]      



Задача 61509

Темы:   [ Раскладки и разбиения ]
[ Производящие функции ]
Сложность: 3+
Классы: 8,9,10,11

Пусть p(n) – количество разбиений числа n (определение разбиений смотри здесь). Докажите равенства:

p(0) + p(1)x + p(2)x '' + ...  =  (1 + x + x² + ...)...(1 + xk + x2k + ...)...  =  (1 – x)–1(1 – x²)–1(1 – x³)–1...

(По определению считается, что  p(0) = 1.)

Прислать комментарий     Решение

Задача 61512

Темы:   [ Раскладки и разбиения ]
[ Производящие функции ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Обозначим через d(n) количество разбиений числа n на различные слагаемые, а через l(n) – на нечётные. Докажите равенства:

  а)  d(0) + d(1)x + d(2)x² + ...  =  (1 + x)(1 + x²)(1 + x³)...;

  б)  l(0) + l(1)x + l(2)x² + ...  =  (1 – x)–1(1 – x³)–1(1 – x5)–1...;

   в)  d(n) = l(n)   (n = 0, 1, 2, ...).

(Считается по определению, что  d(0) = l(0) = 1.)

Прислать комментарий     Решение

Задача 61508

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Производящие функции ]
Сложность: 4
Классы: 9,10,11

Вычислите, используя производящие функции, следующие суммы:

а)      б)      в)      г)   

Прислать комментарий     Решение

Задача 61520

Темы:   [ Числа Каталана ]
[ Производящие функции ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4
Классы: 10,11

Выведите формулу для чисел Каталана, воспользовавшись результатом задачи 61519 и равенством     где
  – обобщенные биномиальные коэффициенты.
Определение чисел Каталана можно найти в справочнике.

Прислать комментарий     Решение

Задача 78613

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Производящие функции ]
Сложность: 4
Классы: 8,9,10

Из первых k простых чисел  2, 3, 5, ..., pk  (k > 5)  составлены всевозможные произведения, в которые каждое из чисел входит не более одного раза (например,  3·5, 3·7·... ·pk, 11  и т. д.). Обозначим сумму всех таких чисел через S. Доказать, что  S + 1  разлагается в произведение более 2k простых сомножителей.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .