ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Две окружности, вписанные в сегмент AB данной окружности, пересекаются в точках M и N. Докажите, что прямая MN проходит через середину C дополнительной дуги данного сегмента AB.

Вниз   Решение


12 полей расположены по кругу: на четырёх соседних полях стоят четыре разноцветных фишки: красная, жёлтая, зелёная и синяя. Одним ходом можно передвинуть любую фишку с поля, на котором она стоит, через четыре поля на пятое (если оно свободно) в любом из двух возможных направлений. После нескольких ходов фишки стали опять на те же четыре поля. Как они могут при этом переставиться?

ВверхВниз   Решение


Дано число 100...01; число нулей в нём равно 1961. Докажите, что это число – составное.

ВверхВниз   Решение


Для многочленов  f(x) = x² + ax + b  и  g(y) = y² + py + q  с корнями x1, x2 и y1, y2 соответственно, выразите через a, b, p, q их результант

R(f, g) = (x1y1)(x1y2)(x2y1)(x2y2).

Вверх   Решение

Задача 35111
Темы:    [ Четность и нечетность ]
[ Инварианты ]
Сложность: 3
Классы: 7,8
В корзину
Прислать комментарий

Условие

На столе стоят семь стаканов – все вверх дном. За один ход можно перевернуть любые четыре стакана.
Можно ли за несколько ходов добиться того, чтобы все стаканы стояли правильно?


Подсказка

Как изменяется чётность числа стаканов, стоящих вверх дном?


Решение

Первый способ. Пусть в некоторый момент мы перевернули 4 стакана, из которых k стаканов стояли вверх дном, а  4 – k  – правильно (k может принимать значения от 0 до 4). После переворачивания из этих четырёх стаканов k будут стоять правильно, а  4 – k  – вверх дном. Таким образом, количество стаканов, стоящих вверх дном, изменится на чётное число  4 – k – k = 2(2 – k).  Таким образом, чётность числа стаканов, стоящих вверх дном, не меняется. Поэтому в любой момент имеется нечётное число стаканов, стоящих вверх дном (так как вначале так стояли 7 стаканов).

Второй способ. Заметим, что каждый стакан должен быть перевернут нечётное число раз, а всего стаканов нечётное число, то есть мы должны сделать нечётное число переворотов. Однако при каждом ходе переворачивается чётное число стаканов. Следовательно, перевернуть все стаканы вниз дном невозможно.


Ответ

Нельзя.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 12
Название Инвариант
Тема Инварианты
задача
Номер 024
книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 4
Название Арифметика остатков
Тема Деление с остатком. Арифметика остатков
параграф
Номер 1
Название Четность
Тема Четность и нечетность
задача
Номер 04.018
web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .