ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вписанная в треугольник $ABC$ окружность с центром $I$ касается его сторон $BC$, $CA$ и $AB$ в точках $A_1$, $B_1$ и $C_1$ соответственно. Вневписанная окружность с центром $J$ касается стороны $AC$ в точке $B_2$ и продолжений сторон $AB$ и $BC$ в точках $C_2$ и $A_2$ соответственно. Пусть прямые $IB_2$ и $JB_1$ пересекаются в точке $X$, прямые $IC_2$ и $JC_1$ – в точке $Y$, прямые $IA_2$ и $JA_1$ – в точке $Z$. Докажите, что если одна из точек $X$, $Y$, $Z$ лежит на вписанной окружности, то и две другие тоже.

   Решение

Задача 102223
Темы:    [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Определите величину угла между часовой и минутной стрелками часов, показывающими 1 час 10 минут при условии, что обе стрелки движутся с постоянными скоростями.


Решение

В 1:00 минутная стрелка "отставала" от часовой на 30°. За 10 минут, прошедших после этого момента, часовая стрелка "пройдёт" 5°, а минутная – 60° (см. задачу 54776), поэтому угол между ними равен  60° – 30° – 5° = 25°.


Ответ

25°.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3662

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .