|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Вписанная в треугольник $ABC$ окружность с центром $I$ касается его сторон $BC$, $CA$ и $AB$ в точках $A_1$, $B_1$ и $C_1$ соответственно. Вневписанная окружность с центром $J$ касается стороны $AC$ в точке $B_2$ и продолжений сторон $AB$ и $BC$ в точках $C_2$ и $A_2$ соответственно. Пусть прямые $IB_2$ и $JB_1$ пересекаются в точке $X$, прямые $IC_2$ и $JC_1$ – в точке $Y$, прямые $IA_2$ и $JA_1$ – в точке $Z$. Докажите, что если одна из точек $X$, $Y$, $Z$ лежит на вписанной окружности, то и две другие тоже. |
Задача 102223
УсловиеОпределите величину угла между часовой и минутной стрелками часов, показывающими 1 час 10 минут при условии, что обе стрелки движутся с постоянными скоростями. РешениеВ 1:00 минутная стрелка "отставала" от часовой на 30°. За 10 минут, прошедших после этого момента, часовая стрелка "пройдёт" 5°, а минутная – 60° (см. задачу 54776), поэтому угол между ними равен 60° – 30° – 5° = 25°. Ответ25°. Источники и прецеденты использования
|
||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|