Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

В выпуклом четырёхугольнике ABCD точки E и F являются серединами сторон BC и CD соответственно. Отрезки AE, AF и EF делят четырёхугольник на четыре треугольника, площади которых равны (в каком-то порядке) последовательным натуральным числам. Каково наибольшее возможное значение площади треугольника ABD?

Вниз   Решение


Автор: Фольклор

B правильном шестиугольнике ABCDEF на прямой AF взята точка X так, что  ∠XCD = 45°.  Hайдите угол FXE.

ВверхВниз   Решение


В треугольник вписан квадрат (две вершины на одной стороне и по одной на остальных). Докажите, что центр вписанной окружности треугольника лежит внутри квадрата.

ВверхВниз   Решение


Внутри окружности с центром O отмечены точки A и B так, что  OA = OB.
Постройте на окружности точку M, для которой сумма расстояний до точек A и B наименьшая среди всех возможных.

ВверхВниз   Решение


Автор: Замков В.

Витя выложил из карточек с цифрами пример на сложение и затем поменял местами две карточки. Как видите, равенство нарушилось. Какие карточки переставил Витя?

Вверх   Решение

Задача 103812
Темы:    [ Арифметические действия. Числовые тождества ]
[ Ребусы ]
Сложность: 2-
Классы: 6
Из корзины
Прислать комментарий

Условие

Автор: Замков В.

Витя выложил из карточек с цифрами пример на сложение и затем поменял местами две карточки. Как видите, равенство нарушилось. Какие карточки переставил Витя?


Подсказка

Проверьте пример ''справа налево''.


Решение

Начнём проверять пример ''справа налево''. В разрядах единиц и десятков всё в порядке, а в разряде сотен появляется ошибка. Значит, одна из цифр этого разряда — 1, 8 или 7 — переставлена. Если предположить, что Витя переставил две карточки ''внутри'' разряда сотен (единственный вариант — поменять местами 7 и 8), то ещё останется ошибка в разряде десятков тысяч. Значит, одна из цифр разряда сотен поменялась с цифрой более старшего разряда.

Чтобы восстановить равенство в разряде сотен, цифру 1 можно поменять только на 9. Цифра 9 в более старших разрядах есть только одна. Но если 1 и 9 поменять местами, то ещё сохранится ошибка в разряде десятков тысяч.

Цифру 8 можно поменять только на 6, но ни одной цифры 6 в примере нет.

Значит, остаётся единственная возможность — поменять цифру 7. Вместо неё надо поставить цифру 9. Она у нас (в более старших разрядах) только одна и, если их поменять местами, то получается верный пример.


Ответ

Источники и прецеденты использования

олимпиада
Название Математический праздник
год
Год 1997
класс
1
Класс 6
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .