Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На плоскости даны 16 точек (см. рисунок).

  а) Покажите, что можно стереть не более восьми из них так, что из оставшихся никакие четыре не будут лежать в вершинах квадрата.
  б) Покажите, что можно обойтись стиранием шести точек.
  в) Найдите минимальное число точек, которые достаточно стереть для этого.

Вниз   Решение


Дана бесконечная последовательность многочленов P1(x), P2(x), ... . Всегда ли существует конечный набор функций  f1(x),  f2(x), ...,  fN(x), композициями которых можно записать любой из них (например,  P1(x) =  f2(f1(f2(x))))?

ВверхВниз   Решение


Даны две пересекающиеся окружности с центрами O1, O2. Постройте окружность, касающуюся одной из них внешним, а другой внутренним образом, центр которой удален от прямой O1O2 на наибольшее расстояние.

ВверхВниз   Решение


Разделим каждое четырёхзначное число на сумму его цифр. Какой самый большой результат может получиться?

Вверх   Решение

Задача 107727
Темы:    [ Десятичная система счисления ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Разделим каждое четырёхзначное число на сумму его цифр. Какой самый большой результат может получиться?


Решение

См. задачу 77999.


Ответ

1000.

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
номер/год
Год 2002
Название конкурс по математике
Задача
Номер 6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .