ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108079
Темы:    [ Медиана, проведенная к гипотенузе ]
[ Элементарные (основные) построения циркулем и линейкой ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Автор: Фольклор

Пусть M – середина стороны BC треугольника ABC. Постройте прямую l, удовлетворяющую следующим условиям:  l || BC,  l пересекает треугольник ABC; отрезок прямой l, заключённый внутри треугольника, виден из точки M под прямым углом.


Решение 1

  Проведём биссектрисы MK и ML углов AMB и AMC (см. рис.) Угол KML – прямой, так как он равен полусумме углов AMB и AMC, составляющих развёрнутый угол. По свойству биссектрисы  BK : AK = MB : MA = MC : MA = CL : AL.  По обратной теореме Фалеса прямые KL и BC параллельны.
  Очевидно, что решение единственно.


Решение 2

  Построим на основании BC как на диаметре полуокружность (см. рис.) и продолжим медиану AM до пересечения с этой полуокружностью в точке N. Проведём через точку M прямые, параллельные NB и NC до пересечения со сторонами соответственно AB и AC треугольника ABC в точках K и L.
  Треугольник KLM получен из треугольника BCN гомотетией с центром в точке A (и коэффициентом  AM : AN),  поэтому  ∠KML = ∠BNC  и  KL || BC.

Замечания

3 балла

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4359
олимпиада
Название Турнир городов
Турнир
Дата 1997/1998
Номер 19
вариант
Вариант осенний тур, основной вариант, 8-9 класс
Задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .