Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Для одного из предприятий-монополистов зависимость объёма спроса на продукцию q (единиц в месяц) от её цены p (тыс. руб.) задаётся формулой: q = 150-15p . Определите максимальный уровень цены p (в тыс. руб.), при котором значение выручки предприятия за месяц r = q· p составит не менее 360 тыс. руб.

Вниз   Решение


Натуральное число n таково, что  3n + 1  и  10n + 1  являются квадратами натуральных чисел. Докажите, что число  29n + 11  – составное.

ВверхВниз   Решение


Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E,  AB = AD,  CA – биссектриса угла C,  ∠BAD = 140°,  ∠BEA = 110°.
Найдите угол CDB.

ВверхВниз   Решение


В розетку электросети подключены приборы, общее сопротивление которых составляет  R=50 Ом. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите (в омах) наименьшее возможное сопротивление Ry этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями Rx и Ry их общее сопротивление даётся формулой R= , а для нормального функционирования электросети, общее сопротивление в ней должно быть не меньше 30 Ом.

ВверхВниз   Решение


Из условия tgϕ=1/ cosα cosβ+ tgα tgβ вывести, что cos 2ϕ 0 .

ВверхВниз   Решение


Две окружности касаются друг друга внешним образом в точке A. Через точку B на их общей касательной AB проведены две прямые, одна из которых пересекает первую окружность в точках M и N, а другая вторую окружность в точках P и Q. Известно, что AB = 6, BM = 9, BP = 5. Найдите отношение площадей треугольников MNO и PQO, где точка O — точка пересечения прямых MP и NQ.

ВверхВниз   Решение


Доказать, что сумма цифр квадрата любого числа не может быть равна 1967.

Вверх   Решение

Задача 109185
Темы:    [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
[ Деление с остатком ]
Сложность: 3-
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Доказать, что сумма цифр квадрата любого числа не может быть равна 1967.


Решение

Квадрат целого числа (как и сумма его цифр) даёт при делении на 3 остаток 0 или 1. А число 1967 при делении на 3 даёт остаток 2.

Источники и прецеденты использования

олимпиада
Название Белорусские республиканские математические олимпиады
олимпиада
Номер 17
Название 17-я Белорусская республиканская математическая олимпиада
Год 1967
неизвестно
Название Задача 8.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .