Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите, что площадь треугольника равна произведению трёх его сторон, делённому на учетверённый радиус окружности, описанной около треугольника, т.е.

S$\scriptstyle \Delta$ = $\displaystyle {\frac{abc}{4R}}$,

где a, b, c — стороны треугольника, R — радиус его описанной окружности.

Вниз   Решение


Ненулевые числа a, b, c таковы, что каждые два из трёх уравнений  ax11 + bx4 + c = 0,  bx11 + cx4 + a = 0,  cx11 + ax4 + b = 0  имеют общий корень. Докажите, что все три уравнения имеют общий корень.

ВверхВниз   Решение


Автор: Фольклор

Точки K и L – середины сторон АВ и ВС правильного шестиугольника АВСDEF. Отрезки KD и LE пересекаются в точке М. Площадь треугольника DEM равна 12. Найдите площадь четырёхугольника KBLM.

ВверхВниз   Решение


Несколько путников движутся с постоянными скоростями по прямолинейной дороге. Известно, что в течение некоторого периода времени сумма попарных расстояний между ними монотонно уменьшалась. Докажите, что в течение того же периода сумма расстояний от некоторого путника до всех остальных тоже монотонно уменьшалась.

ВверхВниз   Решение


Построить такой равнобедренный треугольник, чтобы периметр всякого вписанного в него прямоугольника (две вершины которого лежат на основании треугольника) был постоянный.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по двум данным сторонам, если известно, что медианы, проведённые к этим сторонам, пересекаются под прямым углом.

ВверхВниз   Решение


Решите уравнение:

ВверхВниз   Решение


Докажите, что если (x+)(y+)=1 , то x+y=0 .

Вверх   Решение

Задача 109565
Темы:    [ Иррациональные уравнения ]
[ Монотонность и ограниченность ]
[ Монотонность, ограниченность ]
Сложность: 4+
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Докажите, что если (x+)(y+)=1 , то x+y=0 .

Решение

Умножая обе части данного неравенства на x- , получаем, что -y-=x- . Аналогично, умножая обе части данного равенства на y- , приходим к равенству -x-=y- . Складывая полученные равенства, приходим к равенству -(x+y)=x+y , откуда x+y=0 . Заметим, что функция f(x)=x+ возрастает при x0 ; при x<0 она также возрастает, так как f(x)= и знаменатель, очевидно, убывает. Поэтому при фиксированном y у данного уравнения не больше одного решения; с другой стороны, x=-y – очевидно, рещение уравнения.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1994
Этап
Вариант 5
класс
Класс 9
задача
Номер 94.5.9.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .