ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Докажите, что площадь треугольника равна произведению трёх его сторон, делённому на учетверённый радиус окружности, описанной около треугольника, т.е.
S
где a, b, c — стороны треугольника, R — радиус его описанной окружности.
Ненулевые числа a, b, c таковы, что каждые два из трёх уравнений ax11 + bx4 + c = 0, bx11 + cx4 + a = 0, cx11 + ax4 + b = 0 имеют общий корень. Докажите, что все три уравнения имеют общий корень. Точки K и L – середины сторон АВ и ВС правильного шестиугольника АВСDEF. Отрезки KD и LE пересекаются в точке М. Площадь треугольника DEM равна 12. Найдите площадь четырёхугольника KBLM. Несколько путников движутся с постоянными скоростями по прямолинейной дороге. Известно, что в течение некоторого периода времени сумма попарных расстояний между ними монотонно уменьшалась. Докажите, что в течение того же периода сумма расстояний от некоторого путника до всех остальных тоже монотонно уменьшалась. |
Задача 109617
УсловиеНесколько путников движутся с постоянными скоростями по прямолинейной дороге. Известно, что в течение некоторого периода времени сумма попарных расстояний между ними монотонно уменьшалась. Докажите, что в течение того же периода сумма расстояний от некоторого путника до всех остальных тоже монотонно уменьшалась. Решение Пусть n – число путников, обозначенных буквами P1, P2, ..., Pn. Рассмотрим величину Vij – скорость сближения Pi и Pj (для произвольных 1 ≤ i, j ≤ n; если i = j, то Vij = 0). Эта величина может быть как положительной, так и отрицательной (путники удаляются друг от друга). Заметим, что в течение всего рассматриваемого периода времени Vij не возрастает (а уменьшиться может только один раз – в результате встречи Pi и Pj или обгона одного из них другим). По условию в конце рассмотренного периода времени Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке