ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дана таблица n×n, столбцы которой пронумерованы числами от 1 до n. В клетки таблицы расставляются числа 1, ..., n так, что в каждой строке и в каждом столбце все числа различны. Назовём клетку хорошей, если число в ней больше номера столбца, в котором она находится. При каких n существует расстановка, в которой во всех строках одинаковое количество хороших клеток? На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел? На столе стоят 2004 коробочки, в каждой из которых лежит по одному шарику. Известно, что некоторые из шариков – белые, и их количество четно. Разрешается указать на любые две коробочки и спросить, есть ли в них хотя бы один белый шарик. За какое наименьшее количество вопросов можно гарантированно определить какую-нибудь коробочку, в которой лежит белый шарик? |
Задача 109802
УсловиеНа столе стоят 2004 коробочки, в каждой из которых лежит по
одному шарику. Известно, что некоторые из шариков – белые, и их
количество четно. Разрешается указать на любые две коробочки и спросить,
есть ли в них хотя бы один белый шарик. За какое наименьшее количество
вопросов можно гарантированно определить какую-нибудь коробочку, в которой
лежит белый шарик?
РешениеЗанумеруем коробочки (и соответственно шарики в них) числами от 1 до 2004
и будем вопрос обозначать парой номеров коробочек. Будем называть небелые
шарики черными. ОтветЗа 2003 вопроса. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке