ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 109804
Темы:    [ Последовательности (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Уравнения в целых числах ]
Сложность: 4-
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Последовательность неотрицательных рациональных чисел a1, a2, a3, ... удовлетворяет соотношению  am + an = amn  при любых натуральных m, n.
Докажите, что не все её члены различны.


Решение

Предположим противное. Полагая  m = n = 1,  получаем  a1 + a1 = a1,  то есть a1 = 0.  Поэтому все остальные члены ненулевые. Пусть  a2 = p/qa3 = r/s.  Из условия следует, что    поэтому    но  2qr ≠ 3ps.  Противоречие.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2004
Этап
Вариант 5
Класс
Класс 10
задача
Номер 04.5.10.5

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .