Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 10 задач
Версия для печати
Убрать все задачи

Автор: Храмцов Д.

В какое наибольшее число цветов можно раскрасить все клетки доски размера 10×10 так, чтобы в каждой строке и в каждом столбце находились клетки не более чем пяти различных цветов?

Вниз   Решение


На клетчатую плоскость положили 2009 одинаковых квадратов, стороны которых идут по сторонам клеток. Затем отметили все клетки, которые покрыты нечётным числом квадратов. Докажите, что отмеченных клеток не меньше, чем клеток в одном квадрате.

ВверхВниз   Решение


Автор: Храмцов Д.

В клетках таблицы 10×10 расставлены числа 1, 2, 3, ..., 100 так, что сумма любых двух соседних чисел не превосходит S.
Найдите наименьшее возможное значение S. (Числа называются соседними, если они стоят в клетках, имеющих общую сторону.)

ВверхВниз   Решение


Сумма чисел a1, a2, a3, каждое из которых больше единицы, равна S, причём     для любого  i = 1, 2, 3.
Докажите, что  

ВверхВниз   Решение


Автор: Храмцов Д.

Уголком размера n×m , где m,n2 , называется фигура, получаемая из прямоугольника размера n×m клеток удалением прямоугольника размера (n-1)×(m-1) клеток. Два игрока по очереди делают ходы, заключающиеся в закрашивании в уголке произвольного ненулевого количества клеток, образующих прямоугольник или квадрат. Пропускать ход или красить одну клетку дважды нельзя. Проигрывает тот, после чьего хода все клетки уголка окажутся окрашенными. Кто из игроков победит при правильной игре?

ВверхВниз   Решение


Какое максимальное число ферзей, не бьющих друг друга, можно расставить на шахматной доске 8×8?

ВверхВниз   Решение


На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.
Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?

ВверхВниз   Решение


Существуют ли такие двузначные числа  abcd,  что  ab·cd = abcd.

ВверхВниз   Решение


Автор: Храмцов Д.

Найдите наибольшее натуральное число N, для которого при произвольной расстановке различных натуральных чисел от 1 до 400 в клетках квадратной таблицы 20×20 найдутся два числа, стоящих в одной строке или одном столбце, разность которых будет не меньше N.

ВверхВниз   Решение


Дан квадратный трёхчлен  f(x) = x² + ax + b.  Уравнение  f(f(x)) = 0  имеет четыре различных действительных корня, сумма двух из которых равна  –1. Докажите, что  b ≤ – ¼.

Вверх   Решение

Задача 109857
Темы:    [ Итерации ]
[ Квадратные уравнения. Теорема Виета ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Дан квадратный трёхчлен  f(x) = x² + ax + b.  Уравнение  f(f(x)) = 0  имеет четыре различных действительных корня, сумма двух из которых равна  –1. Докажите, что  b ≤ – ¼.


Решение

  Обозначим через c1 и c2 корни уравнения  f(x) = 0,  а через x1 и x2  – корни уравнения  f(f(x)) = 0,  сумма которых равна  –1. Множество корней последнего уравнения совпадает с объединением множеств корней уравнений  f(x) = c1  и  f(x) = c2.  Рассмотрим два случая.
  1)  x1 и x2 являются корнями одного из последних двух уравнений. Тогда их сумма равна – a, откуда  a = 1.  Можно считать, что  c1c2.  Поскольку
c1 + c2 = –1,  то  c2 ≤ – ½.  Из условия следует, что дискриминант уравнения  f(x) = c2  положителен, то есть  1 – 4b + 4c2 > 0.  Отсюда  4b < 1 + 4c2 ≤ –1.
  2)  x1 – корень уравнения  f(x) = c1,  а x2 – корень уравнения  f(x) = c2.  Тогда  
  Поскольку  c1 + c2 = – a,  а  x1 + x2 = –1,  то     Но тогда   

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2006
Этап
Вариант 5
Класс
Класс 9
задача
Номер 06.5.9.8
олимпиада
Название Всероссийская олимпиада по математике
год
Год 2006
Этап
Вариант 5
Класс
Класс 10
задача
Номер 06.5.10.7

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .