Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)

   Решение

Задача 109944
Темы:    [ Системы точек ]
[ Экстремальные свойства окружности и криволинейных фигур ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Теорема косинусов ]
Сложность: 5-
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)

Решение

Пусть A и B – любые две точки данного множества M , расстояние между которыми равно диаметру d этого множества. Тогда из определения диаметра следует, что если P M , то P лежит внутри или на границе линзы, образованной пересечением кругов радиуса d с центрами A и B (см. рис.) . Докажем, что на одной из дуг AKC и BLD нет точек множества M , т.е. что если K A , L B , то KL>d . Действительно, если BAK=α , LAK=β , то β>α , и из теоремы косинусов получаем

KL2=AK2+d2-2AKd cosβ>d2,

так как AK=2d cosα>2d cosβ . Пусть, например, на дуге AC нет точек множества M за исключением точки A . Тогда, выбросив точку A и разделив оставшееся множество точек на части по прямой AB , получим искомое разбиение, добавив точки прямой AB к левой части, так как в каждой половине линзы только расстояния от границ до точек A или B могут равняться d .

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1998
Этап
Вариант 4
Класс
Класс 10
задача
Номер 98.4.10.3
олимпиада
Название Всероссийская олимпиада по математике
год
Год 1998
Этап
Вариант 4
Класс
Класс 11
задача
Номер 98.4.11.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .