ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 4]      



Задача 98172

Темы:   [ Экстремальные свойства окружности и криволинейных фигур ]
[ Вспомогательная раскраска (прочее) ]
[ Задачи на движение ]
[ Связность. Связные множества ]
Сложность: 5+
Классы: 8,9,10

Ширина реки один километр. Это по определению означает, что от любой точки каждого берега можно доплыть до противоположного берега, проплыв не больше километра. Может ли катер проплыть по реке так, чтобы в любой момент расстояние до любого из берегов было бы не больше:
  а) 700 м?
  б) 800 м?
(Берега состоят из отрезков и дуг окружностей.)

Прислать комментарий     Решение

Задача 66138

Темы:   [ Вписанные и описанные окружности ]
[ Экстремальные свойства окружности и криволинейных фигур ]
[ Неравенство треугольника (прочее) ]
[ Связь величины угла с длиной дуги и хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9

Точка M лежит на стороне AB треугольника ABC,  AM = a,  BM = b,  CM = c,  c < a,  c < b.
Найдите наименьший радиус описанной окружности такого треугольника.

Прислать комментарий     Решение

Задача 116915

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Экстремальные свойства окружности и криволинейных фигур ]
Сложность: 3+
Классы: 9,10

Автор: Нилов Ф.

В окружность Ω вписан четырёхугольник ABCD, диагонали AC и BD которого перпендикулярны. На сторонах AB и CD во внешнюю сторону как на диаметрах построены дуги α и β. Рассмотрим две луночки, образованные окружностью Ω и дугами α и β (см. рис.). Докажите, что максимальные радиусы окружностей, вписанных в эти луночки, равны.

Прислать комментарий     Решение

Задача 109944

Темы:   [ Системы точек ]
[ Экстремальные свойства окружности и криволинейных фигур ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Теорема косинусов ]
Сложность: 5-
Классы: 9,10,11

Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .