ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 109953

Темы:   [ Геометрия на клетчатой бумаге ]
[ Связность. Связные множества ]
[ Замощения костями домино и плитками ]
Сложность: 5
Классы: 9,10,11

Имеется квадрат клетчатой бумаги размером 102×102 клетки и связная фигура неизвестной формы, состоящая из 101 клетки. Какое наибольшее число таких фигур можно с гарантией вырезать из этого квадрата? Фигура, составленная из клеток, называется связной, если любые две ее клетки можно соединить цепочкой ее клеток, в которой любые две соседние клетки имеют общую сторону.
Прислать комментарий     Решение


Задача 111928

Темы:   [ Разбиения на пары и группы; биекции ]
[ Связность. Связные множества ]
[ Числовые таблицы и их свойства ]
Сложность: 5
Классы: 9,10,11

Докажите, что при любом разбиении ста "двузначных" чисел 00, 01, ..., 99 на две группы некоторые числа хотя бы одной группы можно записать в ряд так, чтобы каждые два соседних числа этого ряда отличались друг от друга на 1, 10 или 11, и хотя бы в одном из двух разрядов (единиц или десятков) встречались все 10 различных цифр.

Прислать комментарий     Решение

Задача 78583

Темы:   [ Невыпуклые многоугольники ]
[ Связность. Связные множества ]
[ Наименьший или наибольший угол ]
[ Индукция в геометрии ]
Сложность: 5+
Классы: 8,9,10,11

Дан многоугольник на плоскости, невыпуклый и несамопересекающийся. Д – множество точек, принадлежащих тем диагоналям многоугольника, которые не вылезают за его пределы (то есть лежат либо целиком внутри, либо частью внутри, частью на контуре). Концы этих диагоналей тоже включаются в Д. Докажите, что любые две точки из Д можно соединить ломаной, целиком принадлежащей Д.
Прислать комментарий     Решение


Задача 109856

Темы:   [ Замощения костями домино и плитками ]
[ Геометрия на клетчатой бумаге ]
[ Связность. Связные множества ]
[ Теория игр (прочее) ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 8,9,10,11

Клетчатый квадрат 100×100 разрезан на доминошки. Двое играют в игру. Каждым ходом игрок склеивает две соседних по стороне клетки, между которыми был проведён разрез. Игрок проигрывает, если после его хода фигура получилась связной, то есть весь квадрат можно поднять со стола, держа его за одну клетку. Кто выиграет при правильной игре – начинающий или его соперник?

Прислать комментарий     Решение

Задача 98172

Темы:   [ Экстремальные свойства окружности и криволинейных фигур ]
[ Вспомогательная раскраска (прочее) ]
[ Задачи на движение ]
[ Связность. Связные множества ]
Сложность: 5+
Классы: 8,9,10

Ширина реки один километр. Это по определению означает, что от любой точки каждого берега можно доплыть до противоположного берега, проплыв не больше километра. Может ли катер проплыть по реке так, чтобы в любой момент расстояние до любого из берегов было бы не больше:
  а) 700 м?
  б) 800 м?
(Берега состоят из отрезков и дуг окружностей.)

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .