ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]      



Задача 56572

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 2
Классы: 8,9

В окружность вписаны равнобедренные трапеции ABCD и  A1B1C1D1 с соответственно параллельными сторонами. Докажите, что AC = A1C1.
Прислать комментарий     Решение


Задача 56573

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 2
Классы: 8,9

Из точки M, двигающейся по окружности, опускаются перпендикуляры MP и MQ на диаметры AB и CD. Докажите, что длина отрезка PQ не зависит от положения точки M.
Прислать комментарий     Решение


Задача 56577

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 8,9

Внутри квадрата ABCD выбрана точка M так, что $ \angle$MAC = $ \angle$MCD = $ \alpha$. Найдите величину угла ABM.
Прислать комментарий     Решение


Задача 58385

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 9,10

Пусть a, b, c, d — комплексные числа, причем углы a0b и c0d равны и противоположно ориентированы. Докажите, что тогда $ \Im$abcd = 0.

Прислать комментарий     Решение


Задача 58386

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 9,10

Докажите, что если треугольники abc и a'b'c' на комплексной плоскости собственно подобны, то

(b - a)/(c - a) = (b' - a')/(c' - a').


Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .