ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 46]      



Задача 66684

Темы:   [ Вписанные и описанные окружности ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3+
Классы: 9,10,11

Автор: Нилов Ф.

Дан вписанный $n$-угольник. Оказалось что середины всех его сторон лежат на одной окружности. Стороны $n$-угольника отсекают от этой окружности $n$ дуг, лежащих вне $n$-угольника. Докажите, что эти дуги можно покрасить в красный и синий цвет так, чтобы сумма длин красных дуг равнялась сумме длин синих.
Прислать комментарий     Решение


Задача 66678

Темы:   [ Вписанные четырехугольники ]
[ Связь величины угла с длиной дуги и хорды ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10,11

Четырехугольник $ABCD$ вписан в окружность. $BL$ и $CN$ – биссектрисы треугольников $ABD$ и $ACD$ соответственно. Окружности, описанные вокруг треугольников $ABL$ и $CDN$, пересекаются в точках $P$ и $Q$. Докажите, что прямая $PQ$ проходит через середину дуги $AD$, не содержащей точку $B$.
Прислать комментарий     Решение


Задача 79267

Темы:   [ Поворот помогает решить задачу ]
[ Связь величины угла с длиной дуги и хорды ]
[ Ломаные ]
[ Неравенство треугольника (прочее) ]
Сложность: 5-
Классы: 9,10,11

На арене круглого цирка радиуса 10 метров бегает лев. Двигаясь по ломаной линии, он пробежал 30 километров.
Доказать, что сумма всех углов, на которые лев поворачивал, не меньше 2998 радиан.

Прислать комментарий     Решение

Задача 35695

Темы:   [ Теорема синусов ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 2+
Классы: 9

В окружность вписаны две равнобедренные трапеции с соответственно параллельными сторонами. Докажите, что диагональ одной из них равна диагонали другой трапеции.

Прислать комментарий     Решение

Задача 52514

Темы:   [ Угол между касательной и хордой ]
[ Вписанный угол равен половине центрального ]
[ Связь величины угла с длиной дуги и хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

Две окружности пересекаются в точках A и B. Через точку K первой окружности проводятся прямые KA и KB, вторично пересекающие другую окружность в точках P и Q соответственно. Докажите, что хорда PQ окружности перпендикулярна диаметру KM первой окружности.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 46]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .