ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Демин Д.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 2]      



Задача 67237

Темы:   [ ГМТ - прямая или отрезок ]
[ Связь величины угла с длиной дуги и хорды ]
[ Соображения непрерывности ]
Сложность: 4
Классы: 8,9,10,11

Даны две окружности $\omega_1$ и $\omega_2$, пересекающиеся в точке $A$, и прямая $a$. Пусть $BC$ – произвольная хорда окружности $\omega_2$, параллельная $a$, а $E$ и $F$ – вторые точки пересечения прямых $AB$ и $AC$ с $\omega_1$. Найдите геометрическое место точек пересечения прямых $BC$ и $EF$.
Прислать комментарий     Решение


Задача 67212

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Гомотетия помогает решить задачу ]
[ ГМТ (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

На окружности $\omega$ зафиксирована точка $A$. Хорды $BC$ окружности $\omega$ выбираются так, что проходят через фиксированную точку $P$. Докажите, что окружности 9 точек треугольников $ABC$ касаются фиксированной окружности, не зависящей от выбора $BC$.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .