ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 47]      



Задача 58394

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 4
Классы: 9,10

Пусть точки A*, B*, C*, D* являются образами точек A, B, C, D при инверсии. Докажите, что:
а) $ {\frac{AC}{AD}}$ : $ {\frac{BC}{BD}}$ = $ {\frac{A^*C^*}{A^*D^*}}$ : $ {\frac{B^*C^*}{B^*D^*}}$;
б) $ \angle$(DA, AC) - $ \angle$(DB, BC) = $ \angle$(D*B*, B*C*) - $ \angle$(D*A*, A*C*).
Прислать комментарий     Решение


Задача 56579

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 5
Классы: 8,9

По неподвижной окружности, касаясь ее изнутри, катится без скольжения окружность вдвое меньшего радиуса. Какую траекторию описывает фиксированная точка K подвижной окружности?
Прислать комментарий     Решение


Задача 56580

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 5
Классы: 8,9

В треугольнике ABC угол A наименьший. Через вершину A проведена прямая, пересекающая отрезок BC. Она пересекает описанную окружность в точке X, а серединные перпендикуляры к сторонам AC и AB — в точках B1 и C1. Прямые BC1 и CB1 пересекаются в точке Y. Докажите, что BY + CY = AX.
Прислать комментарий     Решение


Задача 58397

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 6+
Классы: 9,10

Докажите, что если a, b, c и d — длины последовательных сторон выпуклого четырехугольника ABCD, а m и n — длины его диагоналей, то m2n2 = a2c2 + b2d2 - 2abcd cos(A + C) (Бретшнейдер).
Прислать комментарий     Решение


Задача 58398

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 6+
Классы: 9,10

Даны треугольник ABC и прямая l, проходящая через центр O вписанной окружности. Обозначим через A1 (соответственно B1, C1) основание перпендикуляра, опущенного на прямую l из точки A (соответственно B, C), а через A2 (соответственно B2, C2) обозначим точку вписанной окружности, диаметрально противоположную точке касания со стороной BC (соответственно CA, AB). Докажите, что прямые A1A2, B1B2, C1C2, пересекаются в одной точке, и эта точка лежит на вписанной окружности.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 47]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .