Условие
В правильной четырёхугольной пирамиде
SABCD (
S – вершина)
сторона основания равна
8
, высота пирамиды
SH равна 8.
Точки
E и
F – середины рёбер
AB и
AD соответственно. Через точку
F перпендикулярно прямой
SC проходит плоскость, которая пересекает
отрезок
SH в точке
O . Точки
P и
Q расположены на прямых
SC и
EF соответственно, причём прямая
PQ касается сферы радиуса
с центром в точке
O . Найдите наименьшую длину отрезка
PQ .
Ответ
PQ = .
Источники и прецеденты использования
|
web-сайт |
Название |
Система задач по геометрии Р.К.Гордина |
URL |
http://zadachi.mccme.ru |
задача |
Номер |
8818 |