ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 111793
УсловиеВ классе учится 15 мальчиков и 15 девочек. В день 8 Марта некоторые мальчики позвонили некоторым девочкам и поздравили их с праздником (никакой мальчик не звонил одной и той же девочке дважды). Оказалось, что детей можно единственным образом разбить на 15 пар так, чтобы в каждой паре оказались мальчик с девочкой, которой он звонил. Какое наибольшее число звонков могло быть сделано? Решение Обозначим мальчиков M1, M2, ..., M15, а девочек – D1, D2, ..., D15 так, чтобы M1-D1, M2-D2, ..., M15-D15 было единственным разбиением на пары из условия задачи. Предположим, что каждый мальчик позвонил хотя бы двум девочкам. Нарисуем стрелку от каждой девочки Di к мальчику Mi, с которым она находится в паре, а от каждого мальчика Mi – к другой (отличной от Di) девочке, которой он звонил. Тогда от каждого ребёнка ведёт по стрелке. Если мы будем двигаться по стрелкам (начав от произвольной девочки), то рано или поздно мы попадём к девочке, которая уже встречалась в строящейся цепочке. Таким образом, в соответствующем графе есть цикл. Объединим в этом цикле каждого мальчика с девочкой, к которой от него ведет стрелка; остальные пары оставим без изменения. Мы получили другое разбиение на пары, что противоречит условию. Ответ120 звонков. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|