ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 64]      



Задача 111786  (#07.4.8.1)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
[ Признаки равенства прямоугольных треугольников ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 7,8,9

В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны.
Докажите, что все восемь отрезков равны.

Прислать комментарий     Решение

Задача 111787  (#07.4.8.2)

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

Петя задумал натуральное число и для каждой пары его цифр выписал на доску их разность. После этого он стер некоторые разности, и на доске остались числа 2, 0, 0, 7. Какое наименьшее число мог задумать Петя?
Прислать комментарий     Решение


Задача 111788  (#07.4.8.3)

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 7,8,9

Существуют ли такие простые числа p1, p2, ..., p2007, что    делится на p2,    делится на p3, ...,    делится на p1?

Прислать комментарий     Решение

Задача 111789  (#07.4.8.4)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Инварианты ]
[ Монотонность и ограниченность ]
Сложность: 4-
Классы: 8

На шахматной доске расставлены во всех клетках 32 белых и 32 черных пешки. Пешка может бить пешки противоположного цвета, делая ход по диагонали на одну клетку и становясь на место взятой пешки (белые пешки могут бить только вправо-вверх и влево-вверх, а чёрные – только влево-вниз и вправо-вниз). Другим образом пешки ходить не могут. Какое наименьшее количество пешек может остаться на доске?

Прислать комментарий     Решение

Задача 111790  (#07.4.8.5)

Тема:   [ Взвешивания ]
Сложность: 4
Классы: 8,9,10

Среди 11 внешне одинаковых монет 10 настоящих, весящих по 20 г, и одна фальшивая, весящая 21 г. Имеются чашечные весы, которые оказываются в равновесии, если груз на правой их чашке ровно вдвое тяжелее, чем на левой. (Если груз на правой чашке меньше, чем удвоенный груз на левой, то перевешивает левая чашка, если больше, то правая.) Как за три взвешивания на этих весах найти фальшивую монету?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 64]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .