ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 115563
Темы:    [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Окружности радиусов r и R касаются внешним образом в точке K. Прямая касается этих окружностей в различных точках A и B.
Найдите площадь треугольника AKB.


Решение

  Пусть прямая AB касается окружности радиуса r с центром O1 в точке A, окружности радиуса R с центром O2 – в точке B, KH – высота треугольника ABK.
  Согласно задаче 52711  KH = 2rR/r+R.
  По теореме Пифагора  AB² = (R + r)² – (R – r)² = 4rR.  Следовательно,  SAKB = ½ AB·KH =


Ответ

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3337

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .