ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На прямой отметили точки $X_1, \ldots, X_{10}$ (именно в таком порядке) и построили на отрезках $X_1X_2$, $X_2X_3$, ..., $X_9X_{10}$ как на основаниях равнобедренные треугольники с углом $\alpha$ при вершинах. Оказалось, что все эти вершины лежат на полуокружности с диаметром $X_1X_{10}$. Найдите $\alpha$. Для всякого ли выпуклого четырёхугольника найдётся окружность, пересекающая каждую его сторону в двух внутренних точках? На сторонах АВ, ВС и СА треугольника АВС отмечены точки С1, А1 и В1 соответственно так, что ВС1 = С1А1 = А1В1 = В1С. Дан квадратный лист бумаги со стороной 1. Отмерьте на этом листе расстояние ⅚ (лист можно сгибать, в том числе, по любому отрезку с концами на краях бумаги и разгибать обратно; после разгибания на бумаге остаётся след от линии сгиба). При повороте треугольника KLM на угол 120° вокруг точки Q, лежащей на стороне KL, вершина M переходит в вершину K, а вершина L – в точку N, лежащую на продолжении стороны LM за точку M. Найдите отношение площадей треугольников KLM и LNQ. Найдите все натуральные числа n, для которых сумма цифр числа 5n равна 2n. 48 кузнецов должны подковать 60 лошадей. Какое наименьшее время они затратят на работу, если каждый кузнец тратит на 1 подкову 5 минут? (Лошадь не может стоять на двух ногах.)
Пусть AHa и BHb – высоты треугольника ABC, P и Q – проекции точки Ha на стороны AB и AC. Докажите, что прямая PQ делит отрезок HaHb пополам. |
Задача 115891
УсловиеПусть AHa и BHb – высоты треугольника ABC, P и Q – проекции точки Ha на стороны AB и AC. Докажите, что прямая PQ делит отрезок HaHb пополам. РешениеПусть CHc – третья высота треугольника. Тогда ∠HaHcB = ∠C = ∠HbHcA. Следовательно, точка, симметричная Ha относительно AB, лежит на прямой HbHc. Аналогично на этой же прямой лежит точка, симметричная Ha относительно AC. Соответственно, точки P, Q лежат на средней линии треугольника HaHbHc (см. рис.). Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке