Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Основанием пирамиды SABCD является трапеция ABCD с основаниями BC и AD , причём BC:AD = 2:5 . Диагонали трапеции пересекаются в точке E , а центр O вписанной в пирамиду сферы лежит на отрезке SE и делит его в отношении SO:OE = 7:2 . Найдите площадь полной поверхности пирамиды, если площадь боковой грани SBC равна 8.

Вниз   Решение


Даны две окружности, касающиеся друг друга внутренним образом в точке A); из точки B большей окружности, диаметрально противоположной точке A, проведена касательная BC к меньшей окружности. Прямые BC и AC пересекает большую окружность в точках D и E соответственно. Докажите, что дуги DE и BE равны.

Вверх   Решение

Задача 115974
Темы:    [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Вписанный угол, опирающийся на диаметр ]
[ Касающиеся окружности ]
Сложность: 2+
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Даны две окружности, касающиеся друг друга внутренним образом в точке A); из точки B большей окружности, диаметрально противоположной точке A, проведена касательная BC к меньшей окружности. Прямые BC и AC пересекает большую окружность в точках D и E соответственно. Докажите, что дуги DE и BE равны.


Решение

Пусть O – центр малой окружности, ∠OAC = ∠OCA = α. Поскольку BC – касательная к малой окружности, то ∠BCO = 90°. Следовательно, ∠ACD = ∠BCE = 90° – α. Поскольку BA – диаметр большой окружности, то ∠BEA = 90°, откуда ∠EBD = 90° – (90° – α) = α. Поскольку вписанные углы EBD и EAB равны, то равны и дуги EB и ED.

Источники и прецеденты использования

задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .