ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В клетках бесконечного листа клетчатой бумаги записаны действительные числа. Рассматриваются две фигуры, каждая из которых состоит из конечного числа клеток. Фигуры разрешается перемещать параллельно линиям сетки на целое число клеток. Известно, что для любого положения первой фигуры сумма чисел, записанных в накрываемых ею клетках, положительна. Докажите, что существует положение второй фигуры, при котором сумма чисел в накрываемых ею клетках положительна. Треугольник ABC с острым углом ∠A = α вписан в окружность. Её диаметр, проходящий через основание высоты треугольника, проведённой из вершины B, делит треугольник ABC на две части одинаковой площади. Найдите угол B. На окружности, описанной около прямоугольника ABCD, выбрана точка K. Оказалось, что прямая CK пересекает отрезок AD в такой точке M, что |
Задача 116565
УсловиеНа окружности, описанной около прямоугольника ABCD, выбрана точка K. Оказалось, что прямая CK пересекает отрезок AD в такой точке M, что РешениеОтметим на продолжении отрезка AD такую точку T, что AT = DM. Тогда BCMT – параллелограмм. Поскольку DT = DA + AT = 3DM + DM = 4DM, то по теореме Фалеса прямая CM пересекает отрезок BD в такой точке N, что DB = 4DN. Значит, DN = NO, то есть KN – медиана треугольника OKD. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке