ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В тетраэдре ABCD плоские углы BAD и BCD – тупые. Сравните длины ребер AC и BD. Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник. Докажите, что из всех треугольников данного периметра 2p равносторонний имеет наибольшую плошадь. Рассматриваются такие квадратичные функции f(x) = ax² + bx + c, что a < b и f(x) ≥ 0 для всех x. Пусть a, b, c – положительные числа, сумма которых равна 1.
Докажите неравенство:
В равнобочной трапеции ABCD угол при основании AD равен
arcsin Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки,
лежащие на соседних гранях, соединили отрезком. |
Задача 116727
УсловиеВнутри каждой грани единичного куба выбрали по точке. Затем каждые две точки,
лежащие на соседних гранях, соединили отрезком. Решение Спроектируем четыре отрезка, соединяющие точки, лежащие на боковых гранях, на нижнюю грань куба. При этом длины отрезков не увеличатся. Мы получили четырёхугольник, вписанный в единичный квадрат. Докажем, что его периметр не меньше Замечания1. Можно также сослаться на известный факт: периметр четырёхугольника, вписанного в прямоугольник (по вершине на каждой стороне), не меньше удвоенной диагонали прямоугольника (см. задачу 108606). 2. 6 баллов. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке