Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Для чисел 1, ..., 1999, расставленных по окружности, вычисляется сумма произведений всех наборов из 10 чисел, идущих подряд.
Найдите расстановку чисел, при которой полученная сумма наибольшая.

Вниз   Решение


Автор: Фольклор

На поляне пасутся 150 коз. Поляна разделена изгородями на несколько участков. Ровно в полдень некоторые козы перепрыгнули на другие участки. Пастух подсчитал, что на каждом участке количество коз изменилось, причём ровно в семь раз. Не ошибся ли он?

Вверх   Решение

Задача 116808
Темы:    [ Задачи на проценты и отношения ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Автор: Фольклор

На поляне пасутся 150 коз. Поляна разделена изгородями на несколько участков. Ровно в полдень некоторые козы перепрыгнули на другие участки. Пастух подсчитал, что на каждом участке количество коз изменилось, причём ровно в семь раз. Не ошибся ли он?


Решение

Предположим, что пастух прав. Тогда участки, на которых утром коз было меньше, чем вечером, разделим мысленно на малые участки с одной козой. Остальные участки разделим на большие участки с 7 козами. Можно считать, что вечером на малых участках станет по 7 коз, а на больших – по одной. Поскольку общее число коз не изменилось, то число малых участков равно числу больших. Отсюда следует, что общее число коз делится на 8. Но это не так.


Ответ

Ошибся.

Источники и прецеденты использования

олимпиада
Название Московская математическая регата
год
Год 2012/13
класс
Класс 9
задача
Номер 9.5.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .