ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 117003
Темы:    [ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
[ Кооперативные алгоритмы ]
Сложность: 3+
Классы: 5,6,7
В корзину
Прислать комментарий

Условие

Два фокусника показывают зрителю такой фокус. У зрителя есть 24 карточки, пронумерованные числами от 1 до 24. Он выбирает из них 13 карточек и передаёт первому фокуснику. Тот возвращает зрителю две из них. Зритель добавляет к этим двум одну из оставшихся у него 11 карточек и, перемешав, передаёт эти три карточки второму фокуснику. Каким образом фокусники могут договориться так, чтобы второй всегда с гарантией мог определить, какую из трёх карточек добавил зритель?


Решение

Разобьём натуральные числа от 1 до 24 на 12 пар. Фокусники могут заранее договориться, как именно это сделать. Например,  {1, 24},  {2, 23},  {3, 22}  и так далее. Среди тринадцати карточек, выбранных зрителем, найдутся две, на которых записаны числа из одной и той же пары. Именно их и должен вернуть зрителю первый фокусник. В этом случае зрителю придётся добавить к ним "непарную" карточку, которую сможет опознать второй фокусник.

Источники и прецеденты использования

олимпиада
Название Московская устная олимпиада для 6-7 классов
год/номер
Номер 11 (2013 год)
Дата 2013-03-17
класс
1
Класс 7 класс
задача
Номер 7.4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .