Страница: 1
2 >> [Всего задач: 9]
Задача
117000
(#7.1)
|
|
Сложность: 3 Классы: 5,6,7
|
Астролог считает, что 2013 год счастливый, потому что 2013 нацело делится на сумму 20 + 13.
Будет ли когда-нибудь два счастливых года подряд?
Задача
117001
(#7.2)
|
|
Сложность: 3 Классы: 5,6,7
|
В семье весёлых гномов папа, мама и ребёнок. Имена членов семьи: Саша, Женя и Валя. За обеденным столом два гнома сделали по два заявления.
Валя: "Женя и Саша разного пола. Женя и Саша – мои родители".
Саша: "Я – отец Вали. Я – дочь Жени".
Восстановите имя и отчество гнома-ребёнка, если известно, что каждый гном один раз сказал правду, и один раз пошутил.
Задача
117002
(#7.3)
|
|
Сложность: 3 Классы: 5,6,7
|
Из квадратного листа бумаги сложили треугольник (см. рисунки). Найдите отмеченный угол.
Задача
117003
(#7.4)
|
|
Сложность: 3+ Классы: 5,6,7
|
Два фокусника показывают зрителю такой фокус. У зрителя есть 24 карточки, пронумерованные числами от 1 до 24. Он выбирает из них 13 карточек и передаёт первому фокуснику. Тот возвращает зрителю две из них. Зритель добавляет к этим двум одну из оставшихся у него 11 карточек и, перемешав, передаёт эти три карточки второму фокуснику. Каким образом фокусники могут договориться так, чтобы второй всегда с гарантией мог определить, какую из трёх карточек добавил зритель?
Задача
117004
(#7.5)
|
|
Сложность: 3 Классы: 5,6,7
|
Разрежьте по клеточкам квадрат 7×7 на девять прямоугольников (не обязательно различных), из которых можно будет сложить любой прямоугольник со сторонами, не превосходящими 7.
Страница: 1
2 >> [Всего задач: 9]