Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

На книжной полке стоят 30 томов энциклопедии в некотором порядке. За одну операцию разрешается менять местами любые два соседних тома. За какое наименьшее число операций можно гарантированно выстроить все тома в правильном порядке (с первого по тридцатый слева направо) независимо от начального положения?

Вниз   Решение


Жили-были двадцать шпионов. Каждый из них написал донос на десять своих коллег.
Докажите, что не менее, чем десять пар шпионов донесли друг на друга.

ВверхВниз   Решение


В прямоугольном треугольнике ABC  (∠B = 90°)  проведена высота BH. Окружность, вписанная в треугольник ABH, касается сторон AB, AH в точках H1, B1 соответственно; окружность, вписанная в треугольник CBH, касается сторон CB, CH в точках H2, B2 соответственно. Пусть O – центр описанной окружности треугольника H1BH2. Докажите, что  OB1 = OB2.

ВверхВниз   Решение


В ориентированном графе 101 вершина. У каждой вершины число входящих и число выходящих рёбер равно 40.

Доказать, что из каждой вершины можно попасть в любую другую, пройдя не более чем по трём ребрам.

ВверхВниз   Решение


Автор: Петров Ф.

В стране есть  n > 1  городов, некоторые пары городов соединены двусторонними беспосадочными авиарейсами. При этом между каждыми двумя городами существует единственный авиамаршрут (возможно, с пересадками). Мэр каждого города X подсчитал количество таких нумераций всех городов числами от 1 до n, что на любом авиамаршруте, начинающемся в X, номера городов идут в порядке возрастания. Все мэры, кроме одного, заметили, что их результаты подсчётов делятся на 2016. Докажите, что и у оставшегося мэра результат также делится на 2016.

ВверхВниз   Решение


В выпуклом четырехугольнике $ABCD$ точки $K$, $L$, $M$, $N$ – середины сторон $BC$, $CD$, $DA$, $AB$ соответственно. Отрезки $AK$, $BL$, $CM$, $DN$, пересекаясь, делят друг друга на три части. Оказалось, что отношение длины средней части к длине всего отрезка одно и то же для всех четырех отрезков. Верно ли, что $ABCD$ – параллелограмм?

ВверхВниз   Решение


Средняя линия трапеции равна 10 и делит площадь трапеции в отношении 3:5. Найдите основания трапеции.

ВверхВниз   Решение


Диагонали четырехугольника ABCD пересекаются в точке P, причем  SABP2 + SCDP2 = SBCP2 + SADP2. Докажите, что P — середина одной из диагоналей.

ВверхВниз   Решение


Сколько существует шестизначных чисел, у которых по три чётных и нечётных цифры?

Вверх   Решение

Задача 30704
Темы:    [ Сочетания и размещения ]
[ Задачи с ограничениями ]
[ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8
Из корзины
Прислать комментарий

Условие

Сколько существует шестизначных чисел, у которых по три чётных и нечётных цифры?


Решение

На первое место можно поставить любую из 9 ненулевых цифр. Из оставшихся 5 мест выберем два  (5·4 : 2 = 10  способов). На эти два места поставим цифры той же чётности, что и первая (5² способов), на остальные три места – цифры другой чётности (5³ способов). Итого,  9·10·55 способов.


Ответ

90·55 = 281250  чисел.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 11
Название Комбинаторика-2
Тема Классическая комбинаторика
задача
Номер 018

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .