ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Имеется куб размером 10×10×10, состоящий из маленьких единичных кубиков. В центре O одного из угловых кубиков сидит кузнечик. Он может прыгать в центр кубика, имеющего общую грань с тем, в котором кузнечик находится в данный момент; причём так, чтобы расстояние до точки O увеличивалось. Сколькими способами кузнечик может допрыгать до кубика, противоположного исходному? Ладья стоит на поле a1. За ход разрешается сдвинуть ее на любое число клеток вправо или на любое число клеток вверх. Выигрывает тот, кто поставит ладью на поле h8.
Боковое ребро правильной четырёхугольной пирамиды равно b , а плоский угол при вершине равен α . Найдите длину кратчайшего замкнутого пути по поверхности пирамиды, начинающегося и заканчивающегося в вершине основания и пересекающего все боковые рёбра пирамиды. В стране из каждого города выходит 100 дорог и от каждого города можно добраться до любого другого. Одну дорогу закрыли на ремонт. Докажите, что существует граф с 2n вершинами, степени которых равны 1, 1, 2, 2, ..., n, n. |
Задача 30781
УсловиеДокажите, что существует граф с 2n вершинами, степени которых равны 1, 1, 2, 2, ..., n, n. ПодсказкаИспользуйте индукцию по n. Решение Будем строить граф по индукции. База. Для n = 1 такой граф существует: две вершины, соединённые ребром. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке